
Comparing and Combining
Analysis-Based and Learning-

Based Regression Test Selection

Jiyang Zhang, Yu Liu, Milos Gligoric, Owolabi Legunsen, August Shi

The University of Texas at Austin, Cornell University

AST 2022

Partially supported by 1

Regression Test Selection (RTS)

• Regression testing is widely practiced by software developers

• Regression test selection (RTS) optimizes regression testing by only
rerunning a subset of tests that can be affected by changes.

• Evaluate RTS:
• Safe

• Precise

• Efficient

2

Analysis-based RTS

• RTS based on program analysis can save substantial testing time for
(medium-sized) open-source projects.
• Dynamic program analysis RTS (Ekstazi)

• Static program analysis RTS (STARTS)

• Problems:
• Costs

• Imprecise

• Large repository with multiple programming language

3

T1 T2 T1

Machine Learning (ML) RTS

• ML-based RTS model learns from designed features
• Predictive Test Selection (Machalica et al.)

• Problems:
• Requires large training data

• Unsafe

4

T2 T3T1

T2T1

Combining

ML-based RTS

5

T1 T2 T1

T2T1

T1

Analysis-based RTS

Our contributions

• Design and implement novel ML-based RTS models
• Use mutation analysis to build training dataset

• Combine ML-based RTS with analysis-based RTS to improve precision

• Compare our approaches with prior analysis-based RTS and rule-
based RTS

6

Outline

• Technique
• Training Dataset from Mutans

• Feature Extraction

• Model Design

• Model Variations

• Combining Analysis-based RTS and ML-based RTS

• Empirical Study
• Dataset

• Experiments set up

• Results and findings

7

Training Data from Mutants

• It is hard to obtain large data from open-source projects for training

• Utilize Mutation Testing (Pitest) to create Dataset

9

Test1

Test2

Training Data from Mutants Mutation
Test Tool

Mutant 1 Mutant 2 Mutant k

Training SHA

…

Test3

fail Ekstazi fail Ekstazi fail Ekstazi

✓ ✓ ✓ ✓ ✓

 ✓ ✓ ✓ ✓

 ✓

10

• Labeling the data in two ways:
• A) Model predicts test failure:

• Positive labels: test-mutants that are killed

• B) Model predicts what Ekstazi selects
• Positive labels: test-mutants that are selected by Ekstazi

Training Data from Mutants

• To overcome the data imbalance, training dataset instances are pairs
of 𝑐, 𝑡+ , 𝑡−

Mutant 1 Test1 Test2

Training Dataset

✓

Mutant 1 Test1 Test3
✓

Mutant 2 Test1 Test4
✓

Mutant 2 Test2 Test3
✓

Mutant 2 Test2 Test4
✓

11

Machine Learning Model

Feature Extraction Feature Representation Learning

12

Likelihood Prediction

Feature Extraction

• Test:
• split the test class name into tokens via camelCase and snake_case

• convert to lower case

StrTokenizerTest.java str testtokenizer

13

Feature Extraction
• Code diff:

• Basic
• Split changed class name into tokens via camelCase and snake_case and convert to lower

case

• Code
• the sequence of tokens on added and modified lines

• ABS
• map parts of the changed lines of code to general operators

StrTokenizer.java str tokenizer

if (pos > 0) return true; if (pos > return true ;0

14

if (pos > 0) return true; BooleanReturnValsMutatorConditionalBoundaryMutator

)

Feature Representation Learning

• Two Bi-drectional Gated Recurrent Unit encoders:
• diffEncoder: encodes features from the code diff

• testEncoder: encodes features from the tests

15

Feature Representation Learning

GRU
CELL

GRU
CELL

GRU
CELL

ℎ1
𝑡 ℎ2

𝑡 ℎ3
𝑡

Embedding Layer

str testtokenizer

GRU
CELL

GRU
CELL

GRU
CELL

ℎ1
𝑐 ℎ2

𝑐 ℎ3
𝑐

Embedding Layer

java tokenizer

diffEncodertestEncoder

str

16

Feature Representation Learning

ℎ1
𝑡 ℎ2

𝑡 ℎ3
𝑡

ℎ1
𝑐 ℎ2

𝑐 ℎ3
𝑐

ℎ1
𝑐 ℎ2

𝑐 ℎ3
𝑐

⨂

⨂ ℎ𝑎𝑡𝑡 Score s

Test features

Diff features

Diff features

17

Multi-layer Perceptron

Attention Mechanism

Combining Analysis-based RTS and ML-based RTS

19

T1 T2 T1

Analysis-based RTS

T2T1

Machine Learning model

T1

Outline

• Technique
• Overview
• Training Dataset from Mutans
• Feature Extraction
• Model Design
• Combining Analysis-based RTS and ML-based RTS

• Empirical Study
• Baselines
• Dataset
• Experiments setup
• Results and findings

20

Baselines

• Information Retrieval-based RTS model: BM25
• Rank tests based on their relevance to code changes by treating each test file

as a document and the code changes as a query

• The ranking is based on assigned scores to each test

• EALRTS
• Features from a dependency graph extracted by STARTS and the project’s Git

commit history

• Random Forest machine learning model

21

Dataset

• Training data
• 10 open-source Java projects

• Select a training commit without failures and can be run by Analysis-based
RTS (Ekstazi, STARTS)

• Evaluation dataset:
• The evaluation dataset for each project are collected by leveraging its real

code evolution

• Select commits that are after the training commit for evaluation

• Failing tests are introduced by mutating the code at the evaluation commits

22

Evaluation Dataset Construction
Training SHA SHA1 SHA2 … git logs

git diff

Changed
file1

Changed
file2

Changed
file n

…

universalmutator

mutated file 1.1

mutated file 1.2

mutated file 1.3

mutated file 2.1

mutated file 2.2

mutated file 2.3

mutated file n.1

mutated file n.2

mutated file n.3

…

23

Experiments Setup

• Evaluation Setup
• Run models to select the failing tests from the tests selected by analysis-based RTS

tool
• Compute the percentage of tests that the model would need to select to run all

failing tests
• Measure the overhead of combining Analysis-based RTS tool with ML-based RTS

models

• Metrics
• Best safe selection rate:

• the largest selection rate needed to select all failing tests across all pairs of mutants and
commits in each project (ensuring safe selection)

• End-to-end testing time:
• summation of the time to select tests and the time for running the selected tests such that all

the failing tests are included in the selected test set

24

Results (1/3)

7

5

0

2
1

2

0

2

4

6

8

Combine with Ekstazi Combine with STARTS

Times of BEST

Fail-Basic EALRTS BM25

• There is no single ML-based RTS model that consistently outperforms
or underperforms the rest

• Fail-Basic is the model with the highest number of BEST, better than
all other ML-based RTS models and baselines when combining with
analysis-based RTS models

1
00

3

6

4

0

2

4

6

8

Combing with Ekstazi Combing with STARTS

Times of Worst

Fail-Basic EALRTS BM25

25

Results (2/3)

• Combining ML-based RTS with analysis-based RTS improves the
precision of Ekstazi and STARTS

0.29

0.09

0.580.52

0.23

0.73
0.59

0.33

0.79

0

0.2

0.4

0.6

0.8

1

configuration validator csv

Best Safe Selection Rate Combining with
Ekstazi

Fail-Basic BM25 Ekstazi

0.35

0.09

0.60.62

0.24

0.8
0.69

0.34

0.8

0

0.2

0.4

0.6

0.8

1

configuration validator csv

Best Safe Selection Rate Combining with
STARTS

Fail-Basic BM25 STARTS

27

Results (4/4)

• ML-based RTS models combined with an analysis-based RTS
technique for the most part outperform the corresponding analysis-
based RTS technique

29.9

110.9

23.1
47.1

156.5

29.7

0

50

100

150

200

lang configuration csv

Overhead when Combining with Ekstazi

Fail-Basic Ekstazi

185.9
169.2

26.31

186

232.7

34.4

0

50

100

150

200

250

lang configuration csv

Overhead when Combining with STARTS

Fail-Basic STARTS

28

Conclusion

• Combining ML-based RTS and Analysis-based RTS improves the
precision of analysis-based RTS
• Our best ML-based RTS model reduces the average selection rate of two

analysis-based RTS techniques, Ekstazi and STARTS by 25.34% and 21.44%

• Combining ML-based RTS models with an analysis-based RTS
technique results in reduced end-to-end testing time
• Overhead of the ML-based RTS models are small compared with the analysis-

based RTS techniques

• Substantial time savings result from running fewer tests than what the
analysis-based RTS technique selects

29

Thank you!

Jiyang Zhang <jiyang.zhang@utexas.edu>

30

