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Regression Test Selection (RTS)

• Regression testing is widely practiced by software developers

• Regression test selection (RTS) optimizes regression testing by only 
rerunning a subset of tests that can be affected by changes.

• Evaluate RTS:
• Safe

• Precise

• Efficient
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Analysis-based RTS

• RTS based on program analysis can save substantial testing time for 
(medium-sized) open-source projects.
• Dynamic program analysis RTS (Ekstazi)

• Static program analysis RTS (STARTS)

• Problems:
• Costs

• Imprecise

• Large repository with multiple programming language
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Machine Learning (ML) RTS

• ML-based RTS model learns from designed features
• Predictive Test Selection (Machalica et al.)

• Problems:
• Requires large training data

• Unsafe
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Combining

ML-based RTS
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Our contributions

• Design and implement novel ML-based RTS models 
• Use mutation analysis to build training dataset

• Combine ML-based RTS with analysis-based RTS to improve precision

• Compare our approaches with prior analysis-based RTS and rule-
based RTS
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Outline

• Technique
• Training Dataset from Mutans

• Feature Extraction

• Model Design

• Model Variations

• Combining Analysis-based RTS and ML-based RTS

• Empirical Study
• Dataset

• Experiments set up

• Results and findings
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Training Data from Mutants

• It is hard to obtain large data from open-source projects for training

• Utilize Mutation Testing (Pitest) to create Dataset
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Test1

Test2

Training Data from Mutants Mutation 
Test Tool

Mutant 1 Mutant 2 Mutant k

Training  SHA

…

Test3

fail Ekstazi fail Ekstazi fail Ekstazi

✓ ✓  ✓ ✓ ✓

 ✓ ✓ ✓  ✓

   ✓  
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• Labeling the data in two ways:
• A) Model predicts test failure:

• Positive labels: test-mutants that are killed

• B) Model predicts what Ekstazi selects
• Positive labels: test-mutants that are selected by Ekstazi



Training Data from Mutants

• To overcome the data imbalance, training dataset instances are pairs 
of 𝑐, 𝑡+ , 𝑡−

Mutant 1 Test1 Test2


Training Dataset

✓

Mutant 1 Test1 Test3
✓

Mutant 2 Test1 Test4
✓

Mutant 2 Test2 Test3
✓

Mutant 2 Test2 Test4
✓
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Machine Learning Model

Feature Extraction Feature Representation Learning
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Feature Extraction

• Test:
• split the test class name into tokens via camelCase and snake_case

• convert to lower case

StrTokenizerTest.java str testtokenizer
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Feature Extraction
• Code diff:

• Basic
• Split changed class name into tokens via camelCase and snake_case and convert to lower 

case

• Code
• the sequence of tokens on added and modified lines

• ABS
• map parts of the changed lines of code to general operators

StrTokenizer.java str tokenizer

if (pos > 0) return true; if ( pos > return true ;0
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if (pos > 0) return true; BooleanReturnValsMutatorConditionalBoundaryMutator

)



Feature Representation Learning

• Two Bi-drectional Gated Recurrent Unit encoders: 
• diffEncoder: encodes features from the code diff

• testEncoder: encodes features from the tests
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Feature Representation Learning
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Feature Representation Learning
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Combining Analysis-based RTS and ML-based RTS
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Outline

• Technique
• Overview
• Training Dataset from Mutans
• Feature Extraction
• Model Design
• Combining Analysis-based RTS and ML-based RTS

• Empirical Study
• Baselines
• Dataset
• Experiments setup
• Results and findings
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Baselines

• Information Retrieval-based RTS model: BM25
• Rank tests based on their relevance to code changes by treating each test file 

as a document and the code changes as a query 

• The ranking is based on assigned scores to each test

• EALRTS
• Features from a dependency graph extracted by STARTS and the project’s Git 

commit history

• Random Forest machine learning model
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Dataset

• Training data
• 10 open-source Java projects

• Select a training commit without failures and can be run by Analysis-based 
RTS (Ekstazi, STARTS)

• Evaluation dataset:
• The evaluation dataset for each project are collected by leveraging its real 

code evolution

• Select commits that are after the training commit for evaluation

• Failing tests are introduced by mutating the code at the evaluation commits
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Evaluation Dataset Construction
Training SHA SHA1 SHA2 … git logs

git diff

Changed 
file1

Changed 
file2

Changed 
file n

…

universalmutator

mutated file 1.1

mutated file 1.2

mutated file 1.3

mutated file 2.1

mutated file 2.2

mutated file 2.3

mutated file n.1

mutated file n.2

mutated file n.3

…
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Experiments Setup

• Evaluation Setup
• Run models to select the failing tests from the tests selected by analysis-based RTS 

tool
• Compute the percentage of tests that the model would need to select to run all 

failing tests
• Measure the overhead of combining Analysis-based RTS tool with ML-based RTS 

models

• Metrics
• Best safe selection rate: 

• the largest selection rate needed to select all failing tests across all pairs of mutants and 
commits in each project (ensuring safe selection)

• End-to-end testing time:
• summation of the time to select tests and the time for running the selected tests such that all 

the failing tests are included in the selected test set

24



Results (1/3)

7

5

0

2
1

2

0

2

4

6

8

Combine with Ekstazi Combine with STARTS

Times of BEST 

Fail-Basic EALRTS BM25

• There is no single ML-based RTS model that consistently outperforms 
or underperforms the rest

• Fail-Basic is the model with the highest number of BEST, better than 
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analysis-based RTS models
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Results (2/3)

• Combining ML-based RTS with analysis-based RTS improves the 
precision of Ekstazi and STARTS
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Results (4/4)

• ML-based RTS models combined with an analysis-based RTS 
technique for the most part outperform the corresponding analysis-
based RTS technique
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Conclusion

• Combining ML-based RTS and Analysis-based RTS improves the 
precision of analysis-based RTS
• Our best ML-based RTS model reduces the average selection rate of two 

analysis-based RTS techniques, Ekstazi and STARTS by 25.34% and 21.44%

• Combining ML-based RTS models with an analysis-based RTS 
technique results in reduced end-to-end testing time
• Overhead of the ML-based RTS models are small compared with the analysis-

based RTS techniques

• Substantial time savings result from running fewer tests than what the 
analysis-based RTS technique selects
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Thank you!

Jiyang Zhang <jiyang.zhang@utexas.edu>
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